题目:
In English, we have a concept called root, which can be followed by some other word to form another longer word – let’s call this word successor. For example, when the root "an"
is followed by the successor word "other"
, we can form a new word "another"
.
Given a dictionary
consisting of many roots and a sentence
consisting of words separated by spaces, replace all the successors in the sentence with the root forming it. If a successor can be replaced by more than one root, replace it with the root that has the shortest length.
Return the sentence
after the replacement.
Example 1:
Input:
dictionary = ["cat","bat","rat"], sentence = "the cattle was rattled by the battery"
Output:
"the cat was rat by the bat"
Example 2:
Input:
dictionary = ["a","b","c"], sentence = "aadsfasf absbs bbab cadsfafs"
Output:
"a a b c"
Example 3:
Input:
dictionary = ["a", "aa", "aaa", "aaaa"], sentence = "a aa a aaaa aaa aaa aaa aaaaaa bbb baba ababa"
Output:
"a a a a a a a a bbb baba a"
Example 4:
Input:
dictionary = ["catt","cat","bat","rat"], sentence = "the cattle was rattled by the battery"
Output:
"the cat was rat by the bat"
Example 5:
Input:
dictionary = ["ac","ab"], sentence = "it is abnormal that this solution is accepted"
Output:
"it is ab that this solution is ac"
Constraints:
1 <= dictionary.length <= 1000
1 <= dictionary[i].length <= 100
dictionary[i]
consists of only lower-case letters.1 <= sentence.length <= 10^6
sentence
consists of only lower-case letters and spaces.- The number of words in
sentence
is in the range[1, 1000]
- The length of each word in
sentence
is in the range[1, 1000]
- Each two consecutive words in
sentence
will be separated by exactly one space. sentence
does not have leading or trailing spaces.
使用Hash实现
将root存储到使用Hash表, 将要处理的句子拆分后遍历所有单词,通过hash进行判断
-
- 时间复杂度O(n²), 其中n为每个单词匹配到root的长度
- 空间复杂度O(n), rootset存放root
- java实现:
class Solution { public String replaceWords(List<String> dictionary, String sentence) { // 定义一个hashset,存放root Set<String> rootset = new HashSet<String>(); for(String root: dictionary) { rootset.add(root); } // 将每个单词从sentence中分割出来,
// 存放到一个StringBuilder中 StringBuilder ans = new StringBuilder(); for (String word: sentence.split("\\s+") ) { String prefix=""; // 判断单词前缀是否在hashset中。 for (int i=1; i<=word.length(); i++){ prefix = word.substring( 0, i); if (rootset.contains(prefix)) { break; } } if (ans.length() > 0 ) { ans.append(" "); } ans.append(prefix); } // 返回 return ans.toString(); } }
- python实现:
class Solution: def replaceWords(self, dictionary: List[str], sentence: str) -> str: rootset = set(dictionary) def replace(word): for i in range(1, len(word)): if word[:i] in rootset: return word[:i] return word return " ".join(map(replace, sentence.split()))
使用Trie树实现
-
- 时间复杂度O(n), n 为所有字符串长度和, 搜索所有字符串
- 空间复杂度O(n),n 为 Trie树空间
- java实现
class TrieNode { TrieNode[] children; String word; TrieNode(){ children = new TrieNode[26]; /*默认初始化null for (int i=0; i<26; i++){ children[i] = null; } */ } } class Solution{ public String replaceWords(List<String> dictionary, String sentence) { // 将字典数据存放数Trie树中 TrieNode trie = new TrieNode(); for (String root: dictionary) { //从头开始遍历 TrieNode cur =trie; for (char letter: root.toCharArray()){ if (cur.children[letter - 'a'] == null){ cur.children[letter - 'a'] = new TrieNode(); } cur = cur.children[letter - 'a']; } cur.word = root; } // 将句子按照空格分割程单词依次判断是否在Trie树中, // 不存在使用原有单词, 完成新句子拼接 StringBuilder ans = new StringBuilder(); for (String word: sentence.split("\\s+")){ if (ans.length() > 0){ ans.append(" " ); } TrieNode cur = trie; for (char letter:word.toCharArray()){ if (cur.children[letter - 'a'] == null ||\
cur.word != null){ break; } cur = cur.children[letter - 'a']; } ans.append(cur.word!=null?cur.word:word); } return ans.toString(); } }
- python实现:
这个实现使用了python中的collections 的defaultdict容器
defaultdict内置两个属性:
- 一个工厂函数
- dict
这里Trie定义为一个lambda表达式 ,工厂函数为 collections.defaultdict(Trie), trie为trie树根节点,那根节点的子节点结构也是一个工厂函数+ dict ,一直到词根的结束增加一条{‘END’:root} 记录(不一定是叶子节点,可以看到 如果词根是’cat’, 存在Key为’True’, 如果还存在catx,那么Trie还要向下扩展),如果将’cat’在添加到一个空的Trie树: 过程如下,
- 增加’c’ 字母, defaultdict(<function >, {‘c’: defaultdict(<function >, {…})})
- 增加’a’ 字母, 1. 中{ …} 内容-> {‘a’: defaultdict(<function>, {…})}
- 增加’t’ 字母, 2. 中{ …} 内容-> {‘t’: defaultdict(<function >, {True: ‘cat’, …})}
- 如果t后面还有字母增加到{…}
reduce函数实现了以上功能, 是对 每一个文根的单个字符进行处理,构造为一个包含defaultdict的defaultdict,自包含, 有点类似树节点定义。
struct Node{ struct Node *left; struct Node *right; ... };
replace就是查找Trie的过程,找到后替换否则保持不变。
class Solution: def replaceWords(self, dictionary, sentence): Trie = lambda: collections.defaultdict(Trie) trie = Trie() END = True for root in dictionary: reduce(dict.__getitem__, root, trie)[END] = root def replace(word): cur = trie for letter in word: if letter not in cur or END in cur: break; cur = cur[letter] return cur.get(END, word) return " ".join(map(replace, sentence.split()))
参考及引用:
https://leetcode.com/problems/replace-words/solution/
Photo by Daniel Spase from Pexels
Comments are closed.