题目:
Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.
The distance between two adjacent cells is 1.
Example 1:
Input:
[[0,0,0], [0,1,0], [0,0,0]]
Output:
[[0,0,0], [0,1,0], [0,0,0]]
Example 2:
Input: [[0,0,0], [0,1,0], [1,1,1]]
Output:
[[0,0,0], [0,1,0], [1,2,1]]
Note:
- The number of elements of the given matrix will not exceed 10,000.
- There are at least one 0 in the given matrix.
- The cells are adjacent in only four directions: up, down, left and right.
解题:
1. BFS:
- 遍历矩阵将所有值为0的位置放入队列, 对于值1 的点设置为INT_MAX(未遍历标识)
- 从queue中取出数字, 遍历周围四个点,越界或者小于当前值+1不更新,由于当前值不会大于INT_MAX(10000个),所有已遍历标识(INT_MAX)都大于当前值,需要设置新值。
- 设置完毕新值后加入队列,继续向周围扩散判断。
实现:
class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size();
int n = matrix[0].size();
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
queue<pair<int, int>> q;
for (int i=0; i<m; i++){
for (int j=0; j<n; j++){
if (matrix[i][j] == 0){
q.push({i, j});
}
else{
matrix[i][j] = INT_MAX;
}
}
}
while(!q.empty()) {
pair<int, int> t = q.front();
q.pop();
for (auto dir: dirs){
int x = t.first + dir[0];
int y = t.second + dir[1];
if (x<0 || x>=m || y<0 || y>=n ||\
matrix[x][y] <= matrix[t.first][t.second] +1){
continue;
}
else {
matrix[x][y] = matrix[t.first][t.second] + 1;
q.push({x,y});
}
}
}
return matrix;
}
};
2. 动态规划
- 初始化非0值未INT_MAX -1标识未达到
- 两次遍历左,上方向:取其中较小值+1, 第二次遍历右,下方向:排除0,1值后,取其中较小值+1
实现:
class Solution {
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) {
int m = matrix.size();
int n = matrix[0].size();
vector<vector<int>> res(m, vector<int>(n, INT_MAX-1));
for (int i=0; i<m; i++){
for (int j=0; j<n; j++){
if (matrix[i][j] == 0){
res[i][j] = 0;
}
else{
if (i > 0){
res[i][j] = min(res[i][j], res[i-1][j]+1);
}
if (j > 0){
res[i][j] = min(res[i][j], res[i][j-1]+1);
}
}
}
}
for (int i=m-1 ;i >=0 ; i--){
for (int j= n-1; j>=0; j--){
if (res[i][j]!=0 && res[i][j]!=1){
if (i < m-1) {
res[i][j] = min(res[i][j], res[i+1][j]+1);
}
if (j < n-1) {
res[i][j] = min(res[i][j], res[i][j+1]+1);
}
}
}
}
return res;
}
};
参考引用:
花花酱 LeetCode 542. 01 Matrix
Be First to Comment